The Grammatical Structure of Protein Sequences in a Single Non-linear Hidden Markov Model; Prediction of Coding Regions, Secondary and Tertiary Structure
نویسنده
چکیده
We describe a hidden Markov model, HMMSTR, for general protein sequence based on the I-sites library of sequence-structure motifs [1]. Unlike the linear HMMs used to model individual protein families, HMMSTR has a highly branched topology and captures recurrent local features of protein sequences and structures that transcend protein family boundaries. The model extends the I-sites library by describing the adjacencies of different sequence-structure motifs as observed in the database, and achieves a great reduction in parameters by representing overlapping motifs in a much more compact form. The HMM attributes a considerably higher probability to coding sequence than does an equivalent dipeptide model, predicts secondary structure with an accuracy of 74.6% and backbone torsion angles better than any previously reported method, and predicts the structural context of beta strands and turns with an accuracy that should be useful for tertiary structure prediction.
منابع مشابه
Relation Between RNA Sequences, Structures, and Shapes via Variation Networks
Background: RNA plays key role in many aspects of biological processes and its tertiary structure is critical for its biological function. RNA secondary structure represents various significant portions of RNA tertiary structure. Since the biological function of RNA is concluded indirectly from its primary structure, it would be important to analyze the relations between the RNA sequences and t...
متن کاملProtein Secondary Structure Prediction: a Literature Review with Focus on Machine Learning Approaches
DNA sequence, containing all genetic traits is not a functional entity. Instead, it transfers to protein sequences by transcription and translation processes. This protein sequence takes on a 3D structure later, which is a functional unit and can manage biological interactions using the information encoded in DNA. Every life process one can figure is undertaken by proteins with specific functio...
متن کاملA generalization of Profile Hidden Markov Model (PHMM) using one-by-one dependency between sequences
The Profile Hidden Markov Model (PHMM) can be poor at capturing dependency between observations because of the statistical assumptions it makes. To overcome this limitation, the dependency between residues in a multiple sequence alignment (MSA) which is the representative of a PHMM can be combined with the PHMM. Based on the fact that sequences appearing in the final MSA are written based on th...
متن کاملHidden Markov Model for protein secondary structure
We address the problem of protein secondary structure prediction with Hidden Markov Models. A 21-state model is built using biological knowledge and statistical analysis of sequence motifs in regular secondary structures. Sequence family information is integrated via the combination of independent predictions of homologous sequences and a weighting scheme. Prediction accuracy with single sequen...
متن کاملHMMSTR: a hidden Markov model for local sequence-structure correlations in proteins.
We describe a hidden Markov model, HMMSTR, for general protein sequence based on the I-sites library of sequence-structure motifs. Unlike the linear hidden Markov models used to model individual protein families, HMMSTR has a highly branched topology and captures recurrent local features of protein sequences and structures that transcend protein family boundaries. The model extends the I-sites ...
متن کامل